Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 356: 120590, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38522281

RESUMEN

Understanding the origins of sediment transport in river systems is crucial for effective watershed management, especially after catastrophic events. This information is essential for the development of integrated strategies that guarantee water security in river basins. The present study aimed to investigate the rupture of the B1 tailings dam of the Córrego do Feijão mine, which drastically affected the Brumadinho region (Minas Gerais, Brazil). To address this issue, a confluence-based sediment fingerprinting approach was developed through the SedSAT model. Uncertainty was assessed through Monte Carlo simulations and Mean Absolute Error (MAE). Estimates of the overall average contributions of each tributary were quantified for each station and annually during the period 2019-2021. It was observed that the sampling point PT-09, closest to the dam breach, contributed to almost 80% of the Paraopeba River in 2019. Despite the dredging efforts, this percentage increased to 90% in 2020 due to the need to restore the highly degraded area. Additionally, the main tributaries contributing to sediment increase in the river are Manso River "TT-03" (almost 36%), associated with an area with a high percentage of urban land use, and Cedro stream "TT-07" (almost 71%), whose geology promotes erosion, leading to higher sediment concentration. Uncertainties arise from the limited number of available tracers, variations caused by dredging activities, and reduced data in 2020 due to the pandemic. Parameters such as land use, riparian vegetation degradation, downstream basin geology, and increased precipitation are key factors for successfully assessing tributary contributions to the Paraopeba River. The obtained results are promising for a preliminary analysis, allowing the quantification of key areas due to higher erosion and studying how this disaster affected the watershed. This information is crucial for improving decision-making, environmental governance, and the development of mitigating measures to ensure water security. This study is pioneering in evaluating this methodology in watersheds affected by environmental disasters, where restoration efforts are ongoing.


Asunto(s)
Monitoreo del Ambiente , Colapso de la Estructura , Monitoreo del Ambiente/métodos , Conservación de los Recursos Naturales , Efectos Antropogénicos , Sedimentos Geológicos , Política Ambiental , Brasil
2.
Sci Total Environ ; 912: 169136, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38072273

RESUMEN

The use of tailings dams in the mining industry is recurrent and a matter of concern given the risk of collapse. The planning of tailings dam's emplacement usually attends construction design criteria and site geotechnical properties, but often neglects the risk of installing the depositional facilities in potentially unstable landscapes, namely those characterized by steep slopes and(or) high drainage densities. In order to help bridging this gap, the present study developed a framework model whereby geomorphologic vulnerability is assessed by a set of morphometric parameters (e.g., drainage density; relief ratio; roughness coefficient). Using the Ribeirão Ferro-Carvão micro-basin (3265.16 ha) as test site, where six dams currently receive tailings from the mining of iron-ore deposits in the Brumadinho region (Minas Gerais, Brazil) and one has collapsed in 25 January 2019 (the B1 dam of Córrego do Feijão mine of Vale, S.A.), the risk of dam instability derived from geomorphologic vulnerability was assessed and alternative suitable locations were highlighted when applicable. The results made evident the location of five dams (including the collapsed B1) in high-risk regions and two in low-risk regions, which is preoccupying. The alternative locations represent 58 % of Ribeirão Ferro-Carvão micro-basin, which is a reasonable and workable share. Overall, the study exposed the fragility related with tailings dams' geography, which is not restricted to the studied micro-basin, because dozens of active tailings dams exist in the parent basin (the Paraopeba River basin) that can also be vulnerable to geomorphologically-dependent hydrologic hazards such as intensive erosion, valley incision or flash floods. Attention to this issue is therefore urgent to prevent future tragedies related with tailings dams' breaks, in the Paraopeba River basin or elsewhere, using the proposed framework model as guide.

3.
Environ Res ; 236(Pt 2): 116820, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37541417

RESUMEN

Overexploitation of groundwater in urban karst aquifers can lead to negative consequences such as land subsidence, depletion of springs and lakes, and water pollution. It can also have indirect effects such as environmental, socio-economic, and political instability. In the municipality of Sete Lagoas, Brazil, the long-term effects of extensive groundwater extraction have been observed and studied over the years. This paper analyzes the response of the karst aquifer to urban, industrial, and climatological changes that may have contributed to changes in the aquifer over the last four decades. The results show that groundwater extraction has exceeded the average aquifer recharge since the year 2000. From the 1980s, the number of wells has steadily increased due to unplanned urban development, resulting in higher demand for groundwater. In the 2010s, pumping from tubular wells (7.39 × 107 m3/yr) exceeded the maximum recharge capacity of the aquifer (7.33 × 107 m3/yr). These wells are mainly concentrated in two areas: the central urban zone and the industrial sector. As a result, kilometer-long cones of depression have formed, changing the aquifer from confined to unconfined within these regions. According to the census data, about 67% of the wells remain unidentified. The average annual recharge to the aquifer is estimated to be 5.68 × 107 m3/yr, which accounts for 12% of the average annual rainfall in the region. Climatological trends indicate an incipient decrease in precipitation and an increase in temperature, suggesting a potential decrease in future aquifer recharge. In addition, only 17% of the area has high infiltration rates ranging from 35% to 75%. The current situation in Sete Lagoas is one of overexploitation of groundwater resources, which could be mitigated by localized reduction of groundwater consumption and implementation of effective management strategies to increase aquifer recharge.

4.
Sci Total Environ ; 891: 164426, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37236470

RESUMEN

The collapse of B1 dam at the Córrego do Feijão mine of Vale, S.A., located in the Ferro-Carvão stream watershed (Brazil), released 11.7 Mm3 of tailings rich in iron and manganese, and 2.8 Mm3 entered the Paraopeba River 10 km downstream. Seeking to predict the evolution of environmental deterioration in the river since the dam break on January 25, 2019, the present study generated exploratory and normative scenarios based on predictive statistical models, and proposed mitigating measures and subsides to ongoing monitoring plans. The scenarios segmented the Paraopeba into three sectors: "anomalous" for distances ≤63.3 km from the B1 dam site, "transition" (63.3-155.3 km), and "natural" (meaning unimpacted by the mine tailings in 2019; >155.3 km). The exploratory scenarios predicted a spread of the tailings until reaching the "natural" sector in the rainy season of 2021, and their containment behind the weir of Igarapé thermoelectric plant located in the "anomalous" sector, in the dry season. Besides, they predicted the deterioration of water quality and changes to the vigor of riparian forests (NDVI index) along the Paraopeba River, in the rainy season, and a restriction of these impacts to the "anomalous" sector in the dry season. The normative scenarios indicated exceedances of chlorophyll-a in the period January 2019-January 2022, but not exclusively caused by the rupture of B1 dam as they also occurred in areas not affected by the accident. Conversely, the manganese exceedances clearly flagged the dam failure, and persist. The most effective mitigating measure is likely the dredging of the tailings in the "anomalous" sector, but currently it represents solely 4.6 % of what has entered the river. Monitoring is paramount to update the scenarios until the system enters a route towards rewilding, and must include water and sediments, the vigor of riparian vegetation, and the dredging.

5.
Sci Total Environ ; 873: 162303, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36805064

RESUMEN

Water security is an expression of resilience. In the recent past, scientists and public organizations have built considerable work around this concept launched in 2013 by the United Nations as "the capacity of a population to safeguard sustainable access to adequate quantities of acceptable quality water for sustaining livelihoods, human well-being, and socio-economic development, for ensuring protection against water-borne pollution and water-related disasters, and for preserving ecosystems in a climate of peace and political stability". In the 27th Conference of the Parties (COP27), held in Sharm El-Sheikh (Egypt) in last November, water security was considered a priority in the climate agenda, especially in the adaption and loss and damage axes. This discussion paper represents the authors' opinion about how the conference coped with water security and what challenges remain to attend. As discussion paper, it had the purpose to stimulate further discussion in a broader scientific forum.

6.
Sci Total Environ ; 860: 160498, 2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36436622

RESUMEN

The COVID-19 pandemic has caused a global health crisis, and wastewater-based epidemiology (WBE) has emerged as an important tool to assist public health decision-making. Recent studies have shown that the SARS-CoV-2 RNA concentration in wastewater samples is a reliable indicator of the severity of the pandemic for large populations. However, few studies have established a strong correlation between the number of infected people and the viral concentration in wastewater due to variations in viral shedding over time, viral decay, infiltration, and inflow. Herein we present the relationship between the number of COVID-19-positive patients and the viral concentration in wastewater samples from three different hospitals (A, B, and C) in the city of Belo Horizonte, Minas Gerais, Brazil. A positive and strong correlation between wastewater SARS-CoV-2 concentration and the number of confirmed cases was observed for Hospital B for both regions of the N gene (R = 0.89 and 0.77 for N1 and N2, respectively), while samples from Hospitals A and C showed low and moderate correlations, respectively. Even though the effects of viral decay and infiltration were minimized in our study, the variability of viral shedding throughout the infection period and feces dilution due to water usage for different activities in the hospitals could have affected the viral concentrations. These effects were prominent in Hospital A, which had the smallest sewershed population size, and where no correlation between the number of defecations from COVID-19 patients and viral concentration in wastewater was observed. Although we could not determine trends in the number of infected patients through SARS-CoV-2 concentrations in hospitals' wastewater samples, our results suggest that wastewater monitoring can be efficient for the detection of infected individuals at a local level, complementing clinical data.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/epidemiología , Pandemias , Aguas Residuales , Brasil/epidemiología , ARN Viral , Hospitales
7.
MethodsX ; 9: 101858, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36164431

RESUMEN

The method presented in this study assesses groundwater contamination risk using a L-Matrix system approach. The L-Matrix in this case is a cartesian diagram where the XX-axis represents aquifer vulnerability (0≤V≤1) determined by the well-known DRASTIC model, and the YY-axis represents the potential hazardousness (0≤H≤1) of an activity (infrastructural development, industrial activities, livestock and agriculture) measured by a European Commission approach. The diagram is divided into four regions, the boundaries of which are set to V = 0.5 and H = 0.5. Watersheds are represented in this diagram considering their V and H indices, and assigned a potential contamination risk if groundwater sites located within their limits show contaminant concentrations above legal limits for a given use. Depending on the region the watershed falls in the L-Matrix diagram, different management or contamination prevention actions are highlighted: activity development, activity monitoring, activity planning or activity inspecting. Watersheds located in the inspecting region and simultaneously evidencing contamination risk require immediate action, namely conditioning or even suspension of use. The method is tested in the Paraopeba River basin (Minas Gerais, Brazil), a densely industrialized basin that was recently affected by an iron-ore mine tailings dam break.•The L-Matrix diagram highlights different groundwater susceptibility realities experienced by watersheds with different combinations of aquifer vulnerability and activity hazardousness, namely possibility for potential expansion of new hazardous activities but also the necessity to periodically inspect and eventually condition or suspend others.•The L-Matrix diagram is likely a better approach to implement contamination prevention measures in watersheds, than the integrated contamination risk index used by most methods.

8.
Sci Total Environ ; 851(Pt 1): 158248, 2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-36028023

RESUMEN

The present study aimed to investigate the rupture of B1 tailings dam of Córrego do Feijão mine, which drastically affected the region of Brumadinho (Minas Gerais, Brazil). The contamination of water resources reached 155.3 km from the dam site. In the river channel, high concentrations of Mn, Al, As and Fe were detected and correlated to the spillage of the tailings in the river. The presence of the tailings also affected the chlorophyll-a content in the water, as well as the reflectance of riparian forests. With the increase of metal(oid) concentrations above permitted levels, water management authorities suspended the use of Paraopeba River as resource in the impacted areas, namely the drinking water supply to the Metropolitan region of Belo Horizonte. This study aimed to evaluate possible links between tailings distribution, river water quality, and environmental degradation, which worked as latent variables in partial least squares regression models. The latent variables were represented by numerous physical and chemical parameters of water and sediment, measured four times in 22 locations during the rainy season of 2019, in addition to stream flow and to NDVI evaluated in satellite images processed daily. The modeling results suggested a relationship between river flow turbulence and increased arsenic release from sand fractions, as well as desorption of Mn from metal oxides, both representing causes of water quality reduction. They also revealed increasing iron concentrations affecting the forest NDVI (greening), which was interpreted as environmental degradation. The increase of chlorophyll-a concentrations (related with turbidity decreases), as well as the increase of river flows (responsible for dilution effects), seemed to work out as attenuators of degradation. Although applied to a specific site, our modeling approach can be transposed to equivalent dam failures and climate contexts, helping water resource management authorities to decide upon appropriate recovery solutions.


Asunto(s)
Arsénico , Agua Potable , Contaminantes Químicos del Agua , Arsénico/análisis , Brasil , Clorofila , Monitoreo del Ambiente , Hierro , Análisis de los Mínimos Cuadrados , Ríos/química , Arena , Estaciones del Año , Contaminantes Químicos del Agua/análisis
9.
MethodsX ; 9: 101766, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35800984

RESUMEN

Starting with a log-linear relationship between groundwater discharge per unit drainage area (Q/A b), hydraulic turnover time (t) and aquifer mobile storage (z), this study builds a groundwater security method at catchment scale. The method embeds previously published approaches to calculate Q/A b, t and z, and relies solely on stream flow discharges and watershed areas. The ability to build a method on a couple of variables is remarkable. The method recasts the calculated variables as aquifer security indicators (S Q, S t and S z), relating S Q with yield capacity, S t with self-depuration capacity and S z with resilience. Groundwater security is the weighted product of S Q, S t and S z. The method is validated with stream flow discharges and drainage areas concerning 294 hydrometric stations and their watersheds, located in continental Portugal. The results revealed a majority of moderately to highly secure watersheds, especially as regards S t (> 62%), while 7-10% were classified as very highly secured in general (S Q-S t-S z). The least secured basins are located in the more arid regions of continental Portugal (Northeast and south regions), as expected. The method can be easily transposed to any other region worldwide, with the necessary adaptions to regional climate, geological and topographic settings. • Compile stream flow discharge data and organize them as natural logarithms and logarithmic variations as function of time, to estimate Q, t and z; • Recast the Q, t and z values as S Q, S t and S z ratings, respectively, using the appropriate reclassification scales, and estimate watershed security levels, namely average security or customized (weighted) securities that highlight the contributions of Q/A b (watershed yield), t (aquifer's self-depuration capacity) or z (aquifer's resilience); • Use the results to draw illustrative diagrams and spatial distribution maps.

10.
Sci Total Environ ; 838(Pt 1): 155959, 2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-35588823

RESUMEN

Coronavirus pandemic started in March 2020 and since then has caused millions of deaths worldwide. Wastewater-based epidemiology (WBE) can be used as an epidemiological surveillance tool to track SARS-CoV-2 dissemination and provide warning of COVID-19 outbreaks. Considering that there are public places that could be potential hotspots of infected people that may reflect the local epidemiological situation, the presence of SARS-CoV-2 RNA was analyzed by RT-qPCR for approximately 16 months in sewage samples from five public places located in the metropolitan area of Belo Horizonte, MG, Brazil: the sewage treatment plant of Confins International Airport (AIR), the main interstate bus terminal (BUS), an upscale shopping centre (SHC1), a popular shopping centre (SHC2) and a university institute (UNI). The results were compared to those of the influent sewage of the two main sewage treatment plants of Belo Horizonte (STP1 and STP2). Viral monitoring in the STPs proved to be an useful regional surveillance tool, reflecting the trends of COVID-19 cases. However, the viral concentrations in the samples from the selected public places were generally much lower than those of the municipal STPs, which may be due to the behaviour of the non-infected or asymptomatic people, who are likely to visit these places relatively more than the symptomatic infected ones. Among these places, the AIR samples presented the highest viral concentrations and concentration peaks were observed previously to local outbreaks. Therefore, airport sewage monitoring can provide an indication of the regional epidemiological situation. For the other places, particularly the UNI, the results suggested a greater potential to detect the infection and trace cases especially among employees and regular attendees. Taken together, the results indicate that for a regular and permanent sentinel sewage surveillance the sewage from STPs, AIR and UNI could be monitored.


Asunto(s)
COVID-19 , COVID-19/epidemiología , Humanos , Pandemias , ARN Viral , SARS-CoV-2 , Aguas del Alcantarillado , Aguas Residuales
11.
Sci Total Environ ; 834: 155285, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35447180

RESUMEN

The rupture of mine-tailings dams can severely contaminate rivers, because released tailings can interact with water for years keeping contaminant concentrations high. The general purpose of this study was to examine the rupture of B1 tailings dam in Ferro-Carvão stream (municipality of Brumadinho, state of Minas Gerais, Brazil), which occurred in 25 January 2019 and contaminated the main water course (Paraopeba River) with 2.8 Mm3 of metal-rich tailings. The specific purpose was to assess the percentage of non-conforming concentrations following the event, considering the Normative Deliberation COPAM/CERH-MG no. 1. The results showed non-conforming aluminum, iron, manganese, lead, phosphorus and turbidity concentrations, clearly above pre-rupture averages, especially in the rainy period. The catastrophe triggered the suspension of Paraopeba River as drinking water source to the Metropolitan Region of Belo Horizonte (BHMR; 6 million people). Since then, the supply to the BHMR became an everyday challenge to water management authorities, because the Paraopeba source represented a 30% share. Mitigation measures are therefore urgently needed. As complementary objective to this study, we aimed to verify the possibility to restore drinking water supply through conventional treatment. The treatability of Paraopeba River water was assessed by the Raw Water Quality Index considering the rainy and dry periods in separate. The results suggested the possibility to lift up the suspension in the dry period, improving the regional water security. Considering the huge dataset on which this study is standing, our results are generalizable to similar events with sparser information.


Asunto(s)
Agua Potable , Contaminantes Químicos del Agua , Brasil , Monitoreo del Ambiente , Humanos , Ríos , Contaminantes Químicos del Agua/análisis , Abastecimiento de Agua
12.
Environ Pollut ; 306: 119341, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35469926

RESUMEN

This study investigated the collapse of B1 mine-tailings dam that occurred in 25 January 2019 and severely affected the Brumadinho region (Minas Gerais state, Brazil) socially, economically and environmentally. As regards water resources, the event impacted the Paraopeba River in the first 155.3 km counted from the dam site, meaning nearly half the main water course downstream of B1. In the impacted sector, high concentrations of tailings-related Al, Fe, Mn, P in river sediment-tailings mixtures and water were detected, as well as changes to the reflectance of riparian forests. In the river water, the metal concentrations raised significantly above safe levels. For caution, the water management authorities declared immediate suspension of Paraopeba River as drinking water source to the Metropolitan Region of Belo Horizonte (6 million people), irrespective of representing nearly 30% of all supply. In this study, the main purpose was to assess potential links between tailings distribution, river water composition and reflectance of forest vegetation, which worked out as latent variables in regression models. The latent variables were represented by numerous physical and chemical parameters, measured 4 times in 22 sites during the dry period of 2019. The modeling results suggested the release of aluminum and phosphorus from sand fractions in the mine tailings as major cause of water contamination. The NDVI changes were interpreted as environmental deterioration. Changes in redox potential may have raised manganese concentrations in surface water further affecting the forest NDVI. Distance from the B1 dam and dissolved calcium appear to attenuate deterioration. Overall, the regressions allowed robust prognoses of environmental deterioration in the Paraopeba River under low flow conditions. More importantly, they can be transposed to similar dam ruptures helping environmental authorities to decide upon measures that can bring the affected rivers to pre-rupture conditions.


Asunto(s)
Monitoreo del Ambiente , Contaminantes Químicos del Agua , Brasil , Humanos , Análisis de los Mínimos Cuadrados , Agua , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...